An Automatic Sleep Spindle Detector based on WT, STFT and WMSD

نویسنده

  • J.
چکیده

Sleep spindles are the most interesting hallmark of stage 2 sleep EEG. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Sleep Spindles are also promising objective indicators for neurodegenerative disorders. Visual spindle scoring however is a tedious workload. In this paper three different approaches are used for the automatic detection of sleep spindles: Short Time Fourier Transform, Wavelet Transform and Wave Morphology for Spindle Detection. In order to improve the results, a combination of the three detectors is presented and comparison with human expert scorers is performed. The best performance is obtained with a combination of the three algorithms which resulted in a sensitivity and specificity of 94% when compared to human expert scorers. Keywords—EEG, Short Time Fourier Transform, Sleep Spindles, Wave Morphology for Spindle Detection, Wavelet Transform.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sleep Spindles Detection: a Mixed Method using STFT and WMSD

Sleep spindles are a hallmark of stage 2 sleep and are promising indicators of neurodegenerative disorders such as schizophrenia and dementia. In this paper two sleep spindle detectors are presented. The first is based on the Short Time Fourier Transform (STFT), the second is a novel algorithm and is based in the wave morphology of sleep spindles. Finally, a combination of the previous is propo...

متن کامل

Development and comparison of four sleep spindle detection methods

OBJECTIVE The objective of the present work was to develop and compare methods for automatic detection of bilateral sleep spindles. METHODS AND MATERIALS All-night sleep electroencephalographic (EEG) recordings of 12 healthy subjects with a median age of 40 years were studied. The data contained 6043 visually scored bilateral spindles occurring in frontopolar or central brain location. In the...

متن کامل

Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of s...

متن کامل

Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms

Sleep spindles are brief bursts of brain activity in the sigma frequency range (11-16 Hz) measured by electroencephalography (EEG) mostly during non-rapid eye movement (NREM) stage 2 sleep. These oscillations are of great biological and clinical interests because they potentially play an important role in identifying and characterizing the processes of various neurological disorders. Convention...

متن کامل

General Linear Chirplet Transform and Radar Target Classification

In this paper, we design an attractivealgorithm aiming to classify moving targets includinghuman, animal, vehicle and drone, at groundsurveillance radar systems. The non-stationary reflectedsignal of the targets is represented with a novelmathematical framework based on behavior of thesignal components in reality. We further propose usingthe generalized linear chirp transform for the analysisst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012